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The notion of quasiboolean algebras (Bell and Clifton, 1995) is compared with 
related notions of semiprime ideals, commutator ideals, partial compatibility, 
joint distributions of observables, and Bell inequalities on orthomodular lattices. 
Some consequences of characterizations of simultaneously definite properties 
are derived. 

1. INTRODUCTION 

Recently, Bell and Clifton (1995) introduced the notion of quasi-Boolean 
algebras and used them as a unifying element for different approaches to a 
characterization of simultaneously definite properties in quantum mechanics. 

One physical motivation for this approach is a result first proven by 
Kochen and Specker (1967) (see also Specker, 1960; Zierler and Schlessinger, 
1965; Bell, 1966; Mermin, 1993) stating the impossibility to "complete" 
quantum physics by the introduction of noncontextual hidden parameter 
models. Such a possible "completion" had been suggested, though in not 
very concrete terms, by Einstein, Podolsky, and Rosen (1935) (EPR). These 
authors speculated that "elements of physical reality" exist irrespective of 
whether they are actually measured or not. Moreover, EPR conjectured, the 
quantum formalism can be "embedded" into a larger theoretical framework 
which would reproduce the quantum-theoretic results but would otherwise 
be classical and deterministic from an algebraic and logical point of view. 

A proper formalization of the term "element of physical reality" sug- 
gested by EPR can be given in terms of two-valued states or valuations, 
which can take on only one of two values 0 and 1 and which are interpretable 
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as the classical logical truth assignments false and true, respectively. Kochen 
and Specker's (1967) results state that for quantum systems representable by 
Hilbert spaces of dimension higher than two, there does not exist any such 
valuation f :  L ---> {0, 1 } on the set of closed linear subspaces L interpretable 
as quantum mechanical propositions preserving the lattice operations and the 
orthocomplement, even if these lattice operations are carried out among 
commuting elements. 3 

The Kochen and Specker result, it is commonly believed, is directed 
against the noncontextual hidden parameter program envisaged by EPR. 
Indeed, if one takes into account the entire logic spanned by Hilbert space 
(of dimension larger than two) and if one considers all states thereon, any 
truth value assignment to quantum propositions prior to the actual measure- 
ment yields a contradiction. One "fallback" option we shall consider here is 
a restriction to a subset of all possible states, corresponding to specifications 
of physical preparation procedures. It is then possible to recover consistent 
truth value assignments and therefore valuations for a subclass of quantum 
mechanical propositions. In this way one is naturally led to the notion of  
quasiboolean algebras. 

The aim of the present paper is to put these ideas into relations with 
related results previously obtained in the lattice theory and quantum logic 
approach to quantum mechanics. In particular, we are interested in semiprime 
ideals, Boolean quotients, commutators, partial compatibility, joint distribu- 
tions, Bell inequalities, and hidden variables. 

In Rav (1989) the ring-theoretic concept of  serniprime ideal is appropri- 
ately defined for lattices. It is proved that an ideal I of  a lattice L is semiprime 
iff I is the kernel of some homomorphism of  L onto a distributive lattice 
with 0. The theory of semiprime ideals is developed there without assuming 
the axiom of choice and it is proved that the Ultra_filter Principle 4 is equivalent 
to the statement that every semiprime ideal is representable as an intersection 
of prime ideals. 

In Beran (1987), distributivity of  a finitely generated orthomodular lattice 
is characterized using the concept of  a semiprime ideal. A generalization of  
these results can be found in Chevalier (1988), where it is proved that an ideal 
in an orthomodular lattice is semiprime iff it contains the commutator ideal. 

3Nonpreservation of lattice operations among noncommuting propositions is quite evident, 
given the nondistributive structure of quantum logics. 

4The Ultrafilter Theorem for Boolean algebras says that every Boolean algebra contains a 
maximal filter (an ultrafilter, equivalently; recall that an ultrafilter in a Boolean algebra B is 
a proper filter F such that for any x E B, either x ~ F or x' e F). Unlike the case of 
commutative rings, the Axiom of Choice is strictly stronger than the Ultrafilter Theorem for 
Boolean algebras (Banaschewski, 1983). 
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Irreducible orthomodular lattices with Boolean quotients are studied in 
D'Andrea and Pulmannovh ~1995), where a nontrivial example of  an irreduc- 
ible orthomodular lattice is found, all proper quotients of which are Bool- 
ean algebras. 

Some Bell-type inequalities in orthomodular lattices and their relations 
to subadditivity of states, commutators, and Boolean quotients are studied 
in Pulmannov~i and Majernik (1992), Pulmannov~ (1994), and D'Andrea and 
Pulmannov~i (1995) and a further development of these ideas can be found 
in Dvure~enskij and L ~ g e r  (1995a, b) and Pykacz and Santos (1995). 

2. S E M I P R I M E  IDEALS AND QUASIDISTRIBUTIVE LA TTICES  

In the theory of commutative rings, the following result is known as 
Krull's Lemma (Banaschewski, 1983): The Axiom of Choice is equivalent, 
in Zermelo-Frankel set theory, to the condition that any proper ideal in a 
commutative ring with unit is contained in a maximal ideal, which in turn 
is equivalent to the formally simpler condition that any nontrivial commutative 
ring with unit contains a maximal ideal. Another variant of Krull's l_emma 
says that the Boolean Ultrafilter theorem is equivalent to the condition that 
every nontrivial commutative ring with unit contains a prime ideal. There 
have been several attempts to find an analogue of  Krull's Lenuna in the 
theory of  distributive lattices (Banaschewski, 1983). Recall that an ideal I of 
a commutative ring R with unit is called semiprime whenever a n ~ I (n is 
a positive integer) entails a ~ I. According to a well-known result by Krull 
(1929), using the well-ordering theorem, every semiprime ideal is the intersec- 
tion of  all prime ideals that contain it [see Ray (1977) for a proof using only 
the Ultrafilter Principle]. In the following definition, an appropriate analogue 
of the notion of a semiprime ideal for lattices is given (Ray, 1989). 

Recall that an ideal in a lattice L is a subset I of  L such that a ~ I and 
b --< a imply b ~ I, and a, b E I implies a v b ~ L The definition of a filter 
is dual, that is, a subset F of  L is a filter if a ~ F and b --> a imply b ~ F 
and a, b ~ F implies a ^ b ~ F. An ideal (filter) is proper if it is not equal 
to the whole L, and a proper ideal (filter) is maximal if there is no bigger 
proper ideal (filter). 

Definition 2.1. An ideal I of a lattice L is called semiprime if for every 
x, y, z E L, whenever x ^ y ~ I and x ^ z ~ I, then x ^ (y v z) E L Dually, 
a filter F is semiprime if x v y ~ F and x v z ~ F imply that x v (y ^ z) 
~ F .  

In a distributive lattice, every ideal and every filter is semiprime. Recall 
that an ideal I is called prime if x ^ y E I implies that either x ~ I or y 
L It is easy to see that every prime ideal is semiprime, and consequently any 
nonempty intersection of prime ideals or filters is semiprime. 
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The Ultrafilter Principle (in the form of  the Boolean Prime Ideal Theo- 
rem) says that every Boolean algebra contains a prime ideal. Rav (1989) 
proves that the Ultrafilter Principle is equivalent to the statement that every 
semiprime ideal in a lattice is representable as an intersection of prime ideals 
(a dual result holds for filters). 

An ideal I is principal if I = (a] = {b e L: b -< a}. We note that for 
principal ideals, the notion of  a semiprime ideal coincides with the notion 
of  0-distributivity due to Varlet (1968). According to Varlet (1968), a lattice 
with 0 is O-distributive if x A y = 0 and x A Z = 0 implies that x A (y V Z) 
= 0. In Rav (1989) a 0-distributive lattice is called semiprime (i.e., the zero 
ideal (0] is semiprime). Dually, a lattice with l is called dual-semiprime if 
the unit filter [1) is semiprime. A bounded 5 lattice is called bi-semiprime if 
it is both semiprime and dual semiprime. 

Recall that a binary relation R in a lattice is a congruence if R is an 
equivalence relation preserving lattice operations, i.e., aRal and bRbt imply 
a v bRa I v bl and a A bRal A bl. A mapping h: LI -~ L2, where Li, i = l, 
2, are lattices, is a homomorphism if it preserves the lattice operations, i.e., 
h(a v b) = h(a) v h(b) and h(a A b) = h(a) A h(b). The kernel of  a 
homomorphism is the set {a ~ L: h(a) = 0}. The kernel of any homomorphism 
is an ideal, but not every ideal gives rise to a homomorphism in general. Let 
R be a congruence on a lattice L. For a ~ L, let ~ denote the equivalence 
class with respect to R to which a belongs. The set of  all equivalence classes, 
denoted by L/R, is a lattice called a quotient of L. The mapping a ~ 
assigning to every element a e L its corresponding equivalence class ~ in 
/./R is a surjective homomorphism (called also the canonical epimorphism). 

The main theorem in Rav (1989) is the following. 

Theorem 2.2. Let L be a lattice and I an ideal in L. Then the following 
conditions are equivalent: 

1. I is semiprime. 
2. I is the kernel of  some homomorphism onto a distributive lattice 

with zero. 
3. I is the kernel of a homomorphism of L onto a semiprime lattice. 

In Bell and Clifton (1995), the notion of an l-quasidistributive lattice 
(strongly I-quasidistributive lattice) is introduced as follows. As usual, the 
symbol 2 denotes the two-element Boolean algebra {0, 1 }. 

Definition 2.3. Let L be a lattice and I an ideal in L. The lattice L 
is called I-quasidistributive if  (one of) the following equivalent conditions 
are satisfied. 

5A lattice is bounded if it has a smallest element 0 and a greatest element 1. 
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1. Rad(L) C I, where Rad(L) denotes the intersection of the family of 
all prime ideals in L. 

2. Any x ~ I is contained in a prime filter. 
3. For any x ~ I there is a homomorphism h: L ~ 2 such that h(x) 

= 1. 

4. There is a Boolean algebra B and a lattice homomorphism f. L --~ 
B such that f - l (0 )  C I. 

Definition 2.4. A lattice L with an ideal I is called strongly l-quasidistri- 
butive if the following equivalent conditions are satisfied. 

1. I is the intersection of a (nonempty) family of prime ideals. 
2. Any x ~ I is contained in a prime filter F such that F tq I = 0. 
3. For any x ~ I there is a homomorphism h: L ~ 2 such that h(x) 

= 1 and I C_ h- t (0 ) .  
4. There is a Boolean algebra B and a lattice homomorphism f :  L --* 

B such that I = f - l (0) .  
5. Every/-maximal filter is prime. (A filter F is said to be/-maximal 

if it is maximal with respect to the property of disjointness from I.) 

Proposition 2.5. Let L be a lattice, I an ideal in L. The following 
conditions are equivalent: 

1. I is semiprime iff L is strongly l-quasidistributive. 
2. The Ultrafilter Principle (UP) holds. 

Proof. By Rav (1989, Theorem 4.2), every semiprime ideal of a lattice 
is representable as an intersection of prime ideals iff UP holds. By (1) in the 
definition of strongly l-quasidistfibutive lattice, the result follows. �9 

3. IDEALS IN ORTHOLATTICES AND O R T H O M O D U L A R  
LATTICES 

Recall that an ortholattice (OL) is a (bounded) lattice with orthocomple- 
mentation, i.e., a unary operation ': L --> L such that, for all a, b E L, (i) a 
< b ~ b' < a ' ,  ( i i ) (a ' ) '  = a, (iii) a v a '  = 1 (dually, a ^ a '  = 0). An 
ortholattice becomes an orthomodular lattice (OML) if the orthomodular law 

a < - b ~ b  = a v ( a '  ^ b )  

holds. 
A congruence in an ortholattice should also preserve the orthocomple- 

mentation, i.e., aRb =~ a'Rb'. In an orthomodular lattice every lattice congru- 
ence is a congruence (see, e.g., Beran, 1987). Similarly, a homomorphism 
of an ortholattice should preserve orthocomplements and map the unit element 
to the unit element. 
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An ideal I in an ortholattice L is called an orthomodular ideal (or a p- 
ideal) if  

a � 9  b e L ~ ( a v b ) ^ b '  � 9  

Dually, a filter F in L is called an orthomodularfi l ter (or a p-filter) if  

a � 9  b � 9  v b '  � 9  

Lemma 3.1. Let F be a subset o f  an O L  L. The  fol lowing statements 
are equivalent: 

1. F has the fol lowing properties: (i) 1 �9 F, (ii) x �9 F and x '  v y �9 
F imply  y �9 F. 

2. F is an or thomodular  filter. 

Proof  (1) ~ (2): We prove  first that F with propert ies (i) and (ii) is a 
filter. I f x  �9 F, x <-- y, then x ^ y = x �9 F and (x A y)'  v y = x '  v y '  v y 
= 1 �9 F i m p l i e s y  �9 F. I f x ,  y �9 F, t h e n x ' v y ' v ( x ^ y ) =  1 �9 F i m p l i e s  
y '  v (x A y) �9 F, which in turn implies x A y �9 F. To prove  that F is an 
or thomodular  filter, for  x E F, y �9 L define z = (x ^ y) v y' .  Then x '  v z 
= x ' v y ' v ( x A y )  = 1 �9 F i m p l i e s z  �9 F. 

(2) ~ (1): Assume  x �9 F a n d x ' v y  �9 F. T h e n ( x ' v y v y ' ) ^ y = y  
�9 F. �9 

According to Cignoli  (1978), a subset  F of  an ortholattice L with proper-  
ties (i) and (ii) is called a deductive system (see also Kalmbach,  1983). 

A Boolean deductive system is a deduct ive system F such that the relation 
{(x, y) �9 L2: (x'  v y) A (y'  V X) �9 F} is a congruence relation. 

Define, for  x, y �9 L, 

x--->y = (x' A y )  v (x'  A y ' )  v ( x ^  (x'  v y ' ) )  

An orthomodular deductive system is a deductive sys tem such that the 
relation {(x, y) �9 L2: (x ---> y) ^ (y ---> x) �9 F} is a congruence relation on L. 

The fol lowing statement characterizes those ideals in an ortholatt ice 
which are kernels o f  homomorph i sms  onto Boolean algebras (Kalmbach,  
1983). 

Proposition 3.2. Let L be an ortholattice and let I be a proper  ideal o f  
L. The  fol lowing statements are equivalent: 

1. There exists a h o m o m o r p h i s m  h f rom L onto a Boolean algebra 
with h - l (0 )  = I. 

2. I is the intersection of  pr ime ideals o f  L. 
3. {x' �9 L: x �9 I} is a Boolean deduct ive system. 
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In Bell and Clifton (1995) a quasidistributive ortholattice is called a 
quasi-Boolean algebra. As a corollary o f  Proposition 3.2 we obtain that an 
ortholattice L is strongly 1-quasi-Boolean if and only if  the set {x' ~ L: x 
E I} is a Boolean deductive system. Moreover,  L is s t rongly / -quas i -Boolean  
if and only if I is the intersection of  prime ideals, consequently I is semiprime. 
The next proposition shows that the converse statement is also true. 

Propos i t ion  3.3. If  I is a semiprime ideal o f  an ortholattice L, then the 
set F = {x' E L" x E I} is a Boolean deductive system. 

Proof .  We have to prove that x --  y iff (x v y ' )  ^ (y v x ' )  e F is a 
congruence relation. Recall that a reflexive binary relation O on a lattice is 
a congruence relation iff: 

(a) x ~ y(O) i f f x  ^ y --  x v y(O).  
(b) x --< y <- z, x - y(O),  and y --= z(O) imply x --  z(O). 
(c) x <-- y and x - y(O) imply x ^ t --- y ^ t(0) and x v t - y v t(O). 

To prove (i), observe that x ^ y - x v y iff x ^ y v x '  ^ y '  ~ F, and x ^ y 
v x '  ^ y '  --< (x v y ' )  ^ (x' v y) implies that x ----- y. Conversely,  x -- y implies 
x ^ y '  v x '  ^ y  ~ 1. T h e n x  ^ y '  ~ l a n d 0  = x A x '  ~ l i m p l y ,  s i n c e / i s  
semiprime, that x ^ (y' v x ' )  ~ l, and similarly we prove that y ^ (y'  v x ' )  

I. Using once again the semiprime property o f  I, we obtain that (x v y) 
^ ( x ' v y ' )  ~ l, h e n c e x v y - - x ^ y .  

To prove (ii), observe that x --< y --< z, and x - y, y --  z imply x '  ^ y 
l and y '  ^ z ~ L T h e n  x '  ^ z ^ y '  = z ^ y '  ~ l and x '  ^ z ^ y = x '  ^ 

y e I, and since I is semiprime, this yields x '  ^ z ^ (y v y ' )  ~ I, hence x 
~ : Z .  

To prove (iii), observe that x --  y and x = y imply x '  ^ y e I. Then x '  
^ y ^ t < - x  ' ^ y  ~ l a n d 0  = t' ^ y ^ t  ~ I imply (x' v t ' ) ^ t A y  ~ 1, 

h e n c e x ^ t - - - - y ^ t .  Similarly, x ' ^ t ' ^ y _ < x ' ^ y  E l a n d x ' ^ y ^ t '  = 
0 ~ I i m p l y t h a t x ' ^ t ' ^ ( y v t )  ~ l. H e n c e x v t - y v t .  �9 

Corol lary  3.4. In an ortholattice L the fol lowing statements are 
equivalent: 

1. I is a semiprime ideal o f  L. 
2. L is strongly 1-quasi-Boolean. 
3. I is the intersection o f  prime ideals. 
4. {x E L: x '  E I} is a Boolean deductive system. 

Corollary 3.4 extends Krull 's  result to ortholattices and semiprime ideals 
o f  them. For  orthomodular lattices this result was proved in Chevalier  (1988) 
(see Proposition 3.6 below). 

The following proposition characterizes those ideas (filters) of  an ortho- 
lattice which are kernels o f  homomorphisms  onto an or thomodular  lattice. 
For  the proof  see Kalmbach (1983). 
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Proposit ion 3.5. Let  L be an ortholattice, I a proper subset of  L, and F 
= {x e L: x '  e I}. The following statements are equivalent: 

1. There exists a homomorphism h from L onto an orthomodular lattice 
with h- l (0)  = L 

2. F is an orthomodular deductive system. 

It is easy to check that a homomorphic image of  an orthomodular lattice 
is an orthomodular lattice [indeed, let h(a) <- h(b). Orthomodularity gives a 
v b = a v (a '  ^ (a v b)), which implies h(b) = h(a) v h(a)' ^ h(b)]. Let I 
be an ideal in an orthomodular lattice L. It is well known that the following 
statements are equivalent: 

1. I is an orthomodular ideal. 
2. Relation aRb iff aAb  = (a v b) ^ (a' v b ')  ~ I is a congruence. 
3. I is the kernel of  a homomorphism of L. 

Let L be an orthomodular lattice (OML, for short). For a, b e L, 
the element 

corn(a, b) = (a v b) ^ (a' v b) ^ (a v b ')  ^ (a' v b')  

is called the upper commutator  o f  a, b. The  lower commutator is defined 
dually: 

corn(a, b) = c--b-~(a, b) '  

Any ideal in an OML which contains the ideal Ir generated by the upper 
commutators is orthomodular and, for an orthomodular ideal I of  L, the 
quotient L/I is Boolean iff/~ C_ I. The ideal Ic is called the commutator  ideal 
(Marsden, 1970). The following results were obtained in Chevalier 0988) :  

Proposit ion 3.6. Let I be an ideal of  an OML L. The following statements 
are equivalent: 

1. I is semiprime. 
2. I satisfies the condition a ^ b ~ I and a ^ b '  ~ I imply a ~ I. 
3. I contains the commutator  ideal. 

Condition 3 implies that every semiprime ideal is orthomodular. Taking 
into account that an ideal I of  an OML is prime iff I is orthomodular and L/ 
I -- 2, we obtain that an ideal I is semiprime iff it is the intersection of  all 
prime ideals that contain it. Indeed, we clearly have I C f3 {J prime: I C J}, 
and if a ~ I, a ~ J for any prime ideal J which contains L then in the 
Boolean algebra L/I, ~ :/: 0, but h(~) -- 0 for any two-valued homomorphism 
h on L/I, a contradiction. 

Proposition 3.7. Let I be an ideal of  an orthomodular lattice L. The 
following statements are equivalent: 
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1. L is an/-quasi-Boolean algebra. 
2. I is semiprime. 
3. L is a strongly/-quasi-Boolean algebra. 

Proof. (1) ~ (2): According to Definition 2.3(4), if L is a quasi-Boolean 
algebra, there is a Boolean algebra B and a lattice homomorphism 3~ L --) B 
such that f - l (0)  C_ L For every a ~ L we have 

f (O) = f ( a  A a ' )  = f ( a )  ^ f ( a ' )  = 0 

f(1) = f ( a  v a ' )  = f ( a )  v f ( a ' )  = 1 

since a lattice homomorphism is order-preserving. Since a Boolean algebra 
can be characterized as a uniquely complemented ortholattice, we get f (a ' )  
= f (a ) ' ,  hence f preserves orthocomplements. Therefore Ir C f - l (0 )  C_ I. By 
Proposition 3.4, I is semiprime. 

(2) =, (3): A semiprime ideal in an OML is the intersection of all 
prime ideals that contain it. By Definition 2.4(1), L is a strongly/-quasi- 
Boolean algebra. 

(3) ~ (1): Follows directly from the definitions. �9 

Recall that a subalgebra of an OL L is a subset M C L such that (i) a 
M ~ a '  ~ M,(ii)  a , b  ~ M ~ a v b  E M. A s u b a l g e b r a M o f a n O L  

is an OL with the operations inherited from L. A subalgebra of L is a Boolean 
subalgebra if, with operations inherited from L, it is a Boolean algebra. 

Example  3.8. The  following example is given in D'Andrea and Pulman- 
nov~ (1995). Let L be an infinite-dimensional, irreducible, complete, atomic 
OML with covering property. [As a concrete example we may consider the 
OML L = L(H) ,  the lattice of all closed linear subspaces of an infinite- 
dimensional Hilbert space.] Let F denote the set of all finite-dimensional 
elements of L. Then F is an orthomodular ideal in L which is contained in 
any other nonzero orthomodular ideal of L (D'Andrea and Pulmannov~i, 
1995). Let ~ :  L ---> L/F be the canonical epimorphism. 

Let B be any Boolean subalgebra of L. Put Lt = {~-l(b): b e ~(B)}. 
Now, Ll is a subalgebra of L containing F = ~- l (0) ,  and F is contained in 
every nonzero ideal of L1. Moreover, L~IF ~ B is a Boolean algebra. Conse- 
quently, Ll is an irreducible OML which is (strongly)/-quasi-Boolean with 
respect to every nonzero orthomodular ideal of Li. 

The method used in the above example will be used in the sequel for 
the characterization and construction of maximal quasi-Boolean subalgebras. 

Let L be an OL and I an ideal of L such that I is the kernel of a 
homomorphism h: L ~ L/I. Let B be a maximal Boolean subalgebra of 
L/I. Put 

LB= {x e L : x  ~ b f o r s o m e b  EB}  
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It is easy to check that Ln is a subalgebra of L which contains I as an ideal. 
Moreover, Lall ~-- B, hence Ls is quasi-Boolean. 

We claim that Ln is a maximal/-quasi-Boolean subalgebra of L. Assume 
that L I D  Ln is an/-quasi-Boolean subalgebra of L. Then Lll l  is a Boolean 
subalgebra of LII containing B. Since B is maximal in L/I, we must have LII 
I = B. If there is a e L,, a ~ Ls, then all qt B, all  ~ Llll, a contradiction. 

Conversely, let Lt be a subalgebra of  L containing I which is maximal 
with the property of  being/-quasi-Boolean. Then LIII is a Boolean subalgebra 
of L/I, which is contained in a maximal one, say B. Then B D L~/I =~ L8 D 
Ll. Since L~ is maximal with the property of being/-quasi-Boolean, we get 
L B = L 1. 

A subalgebra of  an OML (as an ortholattice) is also an OML. Therefore, 
if I is an orthomodular ideal in an OML L, then Ln is a maximal sub-OML 
of L with the property of  being/-quasi-Boolean (equivalently, that I is a 
semiprime ideal in Ln). 

Summarizing, we have proved the following statement: 

Theorem 3.9. Let I be an ideal of an OL L which is a kernel of a 
homomorphism. A subalgebra L0 of  L is maximal with the properties Lo D 
I and Loll is a Boolean algebra if and only if L0 = Ln for some maximal 
Boolean subalgebra B of  LlI. 

4. STATES ON O R T H O L A T T I C E S  

A state (finitely additive) on an OL L is a map m: L --> [0, 1] such that 
m(1) = 1 and a _L b ~ m(a v b) = m(a) + m(b). 

A state m is order-preserving: assume a ----- b; then a _1_ b' implies that 
m(a v b') = re(a) + m(b') = re(a) + 1 - re(b), and from this we get re(b) 
= re(a) + m(a' ^ b). In other words, the orthomodular identity is satisfied 
in any state m on an ortholattice. 

A state m on an OL L is called Jauch-Piron if 

m(a) = 0 ,  m(b) = O ~ m(a v b) = O 

Equivalently, a state m is Jauch-Piron if  the null set m-l(0)  of  m is an ideal 
in L. 

A state m on an OL L is called a p-state (or an orthomodular state) if 

m(a v b) = m(b) whenever m(a) = 0 

Equivalently, a state m is a p-state if m-l(0)  is an orthomodular ideal. 
A state m on an OL L is called subadditive if 

m(a v b) <-- re(a) + re(O) 
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A state m on an OL L is called a valuation if 

m(a v b) + m(a A b) = re(a) + m(b) 

A state m on an OL L is called two-valued if 

m(a) ~ {0, l} for all a E L 

It is easy to see that the following inclusions hold: 

valuation :=~ subadditive =# p-state ~ Jauch-Piron state 

I f  dim H >- 3, then every completely additive state on L(H) is Jauch-Piron; 
in particular, if H is finite dimensional, every state is Jauch-Piron. It is 
easy to find states on L(H) of two-dimensional Hilbert space which are 
not Jauch-Piron. There are examples of  Jauch-Piron states which are not 
orthomodular, and orthomodular states which are not subadditive (see, e.g., 
Pulmannovfi, 1994). A two-valued state is a valuation if and only if it is 
Jauch-Piron. On an OML, a state m is a valuation if and only if it is 
subadditive. On an ortholattice L, the following statement can be proved: 

Proposition 4.1. A subadditive state m on an ortholattice L is a valuation 
if and only if m- l (1)  is an orthomodular deductive system. 

Proof. I f  m is a valuation, then the relation a -- b iff m(a v b) - m(a 
A b) = 0 is a congruence of L with the kernel m- l (0)  and the quotient is a 
modular ortholattice (see, e.g., Birkhoff, 1973). According to Proposition 
3.5(2), m-l (1)  is an orthomodular deductive system. 

Conversely, if m is subadditive and m- l (1)  is an orthomodular deductive 
system, then m -  1(0) is the kernel of  a homomorphism of L onto an orthomodu- 
lar lattice Lo. Let ~ ~ L0 denote the equivalence class containing a ~ L. 
Then ~(fi) = m(a) defines a state on L 0. Subadditivity of  m implies that 
is subadditive, too, and hence it is a valuation. This implies that m is also 
a valuation. �9 

The answer to the following question is not known to the authors: 

Problem. Does there exist a subadditive state on an ortholattice which 
is not a valuation? 

As a consequence of Theorem 3.9, we obtain the following: 

Proposition 4.2. Let m be an orthomodular state on an OML L. A 
subalgebra L 0 of  L is maximal with respect to the properties that I = m-~(0) 
C L0 and Lo/I is a Boolean algebra iff L0 = LB for some maximal Boolean 
subalgebra of  L/I. 
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Let L be an ortholattice and m a state on L. We say that m satisfies Bell 
inequalities [of type 2 (Pulmannov~i and Majemfk, 1992) or of  order 3 
(Dvure~enskij and Liinger, 1995b)] if, for any a, b, c ~ L, 

re(a) + re(b) + re(c) - m(a ^ b) - m(a ^ c) 

- m(b  ^ c) + m(a A b ^ c) ---< 1 (1) 

It was proved in that if m is a state on an OML L, then Bell inequalities (1) 
are satisfied if and only if m(c---6~(a, b)) -- 0 for all a, b e L. This yields 
the following statement: 

Theorem 4.3. Let m be a state on an OML L and I = m-l(0) .  The 
following statements are equivalent: 

1. Inequalities (1) are satisfied in m. 
2. I is a semiprime ideal of  L. 
3. L is a / -quasi-Boolean algebra. 

Recall that two elements a, b in an OML L are compatible if c--b-~(a, b) 
= 0. We will write aCb if a, b are compatible. For any subset A of  L, define 
C(A) = {b ~ L: aCb, Va ~ A}. The set C(A) is called the commutant of  A 
in L. It is well known that C(A) is a subalgebra of  L for any subset A of L. 
The set C(L) is the center of  L. 

I f p  is an atom in an OML L, then C(p) [ -  C({p})] = [0, p ' ]  t3 [p, 
1]. Indeed, bCp implies p = b ^ b v p ^ b ' ,  and since p is an atom, either 
p ^ b = 0, in which case p <- b ' ,  o r p  ^ b '  -- 0, in which c a s e p  --< b. 

It is a well-known fact that an interval [0, a] in an OML is an orthomodu- 
lar ideal iff a belongs to the center C(L) of L. Therefore, for every a ~ L, 
Lo = C(a) is the greatest subalgebra Lo of L with the property that [0, a] is 
an orthomodular ideal in L0. Combining this with our previous results, we 
obtain the following statement. 

Theorem 4.4. Let L be an OML. For any a e L, a subalgebra LI of  L 
is maximal with respect to the property that L 1 is /-quasi-Boolean algebra, 
where I = [0, a] if and only if L1 = LB for some maximal Boolean subalgebra 
B of  C(a)/l. 

The following definition can be found in Ptfik and Pulmannovfi (1991). 
We say that a subset M of an OML L is partially compatible with respect to 
a (p.c. a in short, a e L) if the following two conditions are satisfied: 

1. M C C(a). 
2. M ^ a = {m A a: m e M} is a pairwise compatible set. 

In particular, if a is an atom of  L, then for any b ~ C(a), b ^ a is either 
0 or a, hence the whole C(a) is p .c .a .  In the next proposition, we list some 
basic properties of  partial compatibility (Ptfik and Pulmannovfi, 1991). 
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Proposition 4.5. Let L be an OML, M a subset of L, and a, ai (i ~ I) 
elements of L. The following are true: 

1. M is p.c. a iff {x, y} p.c. a for all x, y ~ M. 
2. {x, y} p.c. a iff {x, y} C C(a) and a <- com{x, y}. In particular, {x, 

y} p.c. corn{x, y}. 
3. {x, y} p.c. ai for all i ~ I implies {x, y} p.c. vi ai and A ai. 
4. A maximal p.c. a set Q containing a given set M (by Zom's lemma, 

it exists) is a subalgebra of L. 

Proposition 4.6. A maximal p.c. a set Q in an OML L (a ~ L) coincides 
with a subalgebra L0 of L which is maximal with respect to the properties 
that [0, a ']  is an orthomodular ideal in Lo and L0 is [0, a']-quasi-Boolean. 

Proof. (1) Let Q be a maximal p.c. a subset of L. We then have the 
following properties: Q c C(a) and [0, a ']  is an orthomodular ideal in C(a). 
Therefore C(a) can be factorized to C(a) = [0, a] • [0, a ']  and the quotient 
C(a)l[O, a'] is isomorphic with the interval [0, a]. Moreover, QI[O, a'] is 
isomorphic with Q A a. According to Proposition 4.5(4), it is a subalgebra 
of [0, a], and since it is pairwise compatible, it is a Boolean algebra. Finally, 
Q A a is a maximal Boolean subalgebra of  [0, a], because Q is a maximal 
p.c. a set. Observe that Q = La, where B = QI[O, a'] = Q A a. 

2. Let L0 be a subalgebra of L which is maximal with the property that 
L0 is a [0, a']-quasi-Boolean algebra. Then [0, a'] must be an orthomodular 
ideal of L0, and hence L0 C C(a). In addition, L0/[0, a'] is a Boolean algebra. 
Since L0/[0, a'] is isomorphic with L0 A a, this yields that L0 is p .c .a .  If 
L0 is not maximal p.c. a subset of L, then there is a maximal p.c. a subset 
Q of L containing Lo. According to Proposition 4.5(4), Q is a subalgebra of 
L. Then Lo/[0, a ']  C QI[O, a'], and QI[O, a'] is a Boolean algebra. Hence 
Q is [0, a']-quasi-Boolean algebra. Owing to maximality of L0, we get L0 

- - O .  �9 

In particular, if p is an atom of L, then C(p) = [0, p']  1.3 [p, 1], and 
C(p)l[O, p'] ==- [0, p] is isomorphic with the Boolean algebra 2. Hence C(p) 
itself is the greatest p.c. p subalgebra of L. Equivalently, [0, p']  is a prime 
ideal of C(p), and C(p) is the greatest [0, p']-quasi-Boolean subalgebra of L. 

Let m be a state on an ortholattice L. If  there is an element a E L such 
that m(b) = 0 if and only if b _L a, we say that a is the support of m, and 
write a = s(m). 

On the Hilbert space logic L(H), dim H --> 3, every completely additive 
state m has a support, namely if m corresponds to a density operator D with 
the spectral decomposition D = ~,i wiPi, then its support is s(m) = v Pi. 
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We say that a subset M of an OML L has a j o in t  distribution in a state 
m if for every finite subset {al, a2 . . . . .  a.} of M there is a probability 
measure Ix on ~(R")  such that 

Ix(El • E2 • "'" • E,,) = m(x,q(El)  ^ " "  ^ xa,(En)) 

where Xai is the proposition observable corresponding to the element a,- [that 
is, Xai(E), E ~ ~(R) ,  is equal to ai, a'i, 1, or 0 if E contains 1, 0, both 1 and 
0, or none of 1 and 0, respectively]. For the following facts about joint 
distribution see, e.g., Pulmannov~i (1985), Pt~k and Pulmannov~i (1991), and 
Pulmannovfi and Dvuretenskij (1985). A subset M of L has a joint distribution 
in a state m if and only if re(corn(at . . . . .  a,)) = 1 for any a~ . . . . .  a ,  ~ M. 
If ^FCM corn F exists, where the infimum is taken over all finite subsets F 
of M, we call it the (lower) commutator of  the set M, and M p.c. c o m M  
whenever c o m M  exists. In particular, if L is a complete lattice, then c o m M  

exists for any M C L. In a separable Hilbert-space logic L(H) ,  the condition 
that M has a joint distribution in a e-additive state m can be rewritten as 
m ( c o m M )  = 1. If L ( M )  denotes a subalgebra of L generated by M, then 
coraL(M)  = c o m M .  Moreover, since L(M) p.c. c o m M ,  L ( M )  ^ c o m M  is a 
Boolean subalgebra of  the OML ( c o m M ]  (or, equivalently, of the quotient 
C(comM)l[O,  c--6-~M], and for any a ~ C ( c o m M ) ,  a = a ^ c o m M  v a ^ 
c--6-~M. Therefore re(a) = m(a  A c o m M ) ,  whenever m ( c o m M )  = 1. 

This means that a maximal subset of L(H) having a joint distribution 
in a state m is a subalgebra L0 of L(H) maximal with the property m(comLo)  
= 1. Moreover, elements of  Lo can be treated, with regard to their stochastic 
properties in the state m, as the classical propositions Lo ^ comLo. 

Now if the support s(m) of the state m exists, then m(com(al  . . . . .  a,,)) 
= 1 iff s(m) < com(al  . . . . .  a,,). Therefore, a maximal p.c. s(m) set can also 
be characterized as a subalgebra Lo of  L which is maximal with respect to 
the properties L0 C C(s(m)) and L0 have a joint distribution in the state m. 
For any a ~ C(s(m)) we have a = a A s(m) v a ^ s (m) ' ,  hence re(a) = m(a 
^ s(m)).  If s(m) is an atom, then a ^ s(m) is either 0 or s(m),  whence re(a) 
is either 0 or 1. These remarks will be used in the next section. 

5. SIMULTANEOUSLY D E F I N I T E  P R O P E R T I E S  

Consider a quantum system represented by a Hilbert space H whose 
state is represented at some moment by some density (positive, Hermitian, 
trace-class one) operator D on H. Each projection operator P on H defines 
a proposition of the system and has eigenvalues 1 and 0, which can be 
interpreted as "true" and "false." There is a well-known bijection between 
the set of projections and the set L(H)  of closed subspaces of H. The corres- 
ponding state is then given by the mapping P ~ Tr(PD), P ~ L(H) .  The  
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following question now arises. Of the propositions of the system, represented 
by L(H), which can be regarded as actually having simultaneously well- 
defined values (0 or 1) in state D? Three proposals are considered in Bell 
and Clifton (1995). We use the symbol L(D) for the set of propositions 
in question. 

I. The orthodox proposal advocated by von Neumann (1955) and Dirac 
(1958) is 

L(D) = {P E L(H): Tr(PD) = 1 or 0} 

Equivalently, 

L(D) = {P ~ L(H): s(D) <-- P or s(D) < P'} 

where s(D) denotes the support of the state D. 
If  s(D) is an atom (i.e., if D is a pure state), then L(D) coincides with 

C(s(D)), the maximal p.c. s(D) subalgebra of L(H). According to Proposition 
4.6, L(D) is the maximal [0, s(D)']-quasi-Boolean subalgebra of L. Clearly, 
s(D) is a central atom of L(D), and if H is finite-dimensional, then L(D) is 
easily seen to be generated by s(D) and all atoms contained in s(D)'. 

II. We require that L(D) consists of propositions that have definite 
values in all pure states corresponding to the spectral projections of D with 
nonzero eigenvalues 

L(D) = {P ~ L(H): VP ~ Po, P <- P or P --< P'} 

where Po denotes the set of spectral projections of D with nonzero 
eigenvalues. 

Writing L0 = Ns c(_p_), I = [0, s(D)'], and taking into account that 
s(D) = v P, it can be easily checked that I C L(D) C Lo, L(D) is/-quasi- 
Boolean, and L(D) = La, where B is the Boolean subalgebra of Loll generated 
by the classes corresponding to the elements P E Po and s(D)'. L(D) is a 
maximal/-quasi-Boolean subalgebra of L with the additional property that 
P E Po are its central atoms. 

HI. The proposal for L(D) due to Bub and Clifton (1995) is as follows. 
Let {Ri} be the (finite, for simplicity) set of spectral projections of some 
observable represented by the self-adjoint operator R, and (for pure D) define 
DRi = (D v R~) ^ R,. for all i. Let {DRj} be the set of all nonzero DRr The 
proposal for L(D) is 

L(D) = {P E L(H): Vj, DRj <-- P or DRj <-- P'} 

Every DRj can be interpreted as the LUders change of the state D after 
measurement of Rj. Correspondingly, the state D after a measurement of R 
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is changed into a mixture of the states DRj. The new state has the support 
vDRj, hence the ideal corresponding to zero-valued propositions in this new 
state is I = [0, (vDRj)']. With this interpretation, I l l  is analogous to II, but 
takes into account the LUders change of  the initial state after a measurement 
of a chosen observable. 
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